Part Number Hot Search : 
BSR16 01510001 11202 ST232BW SP6260 1M2D3XTR 91ZB3 2SC45777
Product Description
Full Text Search
 

To Download ICS853014BGL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
ICS853014 Features
* * * * * * * * * * *
Five differential LVPECL/ECL outputs Two selectable differential LVPECL clock inputs PCLKx, PCLKx pairs can accept the following differential input levels: LVPECL, LVDS, CML, SSTL Maximum output frequency: > 2GHz Output skew: 13ps (typical) Part-to-part skew: 60ps (typical) Propagation delay: 460ps (typical) LVPECL mode operating voltage supply range: VCC = 2.375V to 3.8V, VEE = 0V ECL mode operating voltage supply range: VCC = 0V, VEE = -3.8V to -2.375V -40C to 85C ambient operating temperature Available in both standard (RoHS 5) and lead-free (RoHS 6) packages
General Description
ICS
HiPerClockSTM
The ICS853014 is a low skew, high performance 1-to-5, 2.5V/3.3V Differential-to-LVPECL/ECL Fanout Buffer and a member of the HiPerClockSTM family of High Performance Clock Solutions from IDT. The ICS853014 has two selectable clock
inputs. Guaranteed output and part-to-part skew characteristics make the ICS853014 ideal for those applications demanding well defined performance and repeatability.
Block Diagram
EN Pulldown PCLK0 Pulldown PCLK0 Pullup/Pulldown PCLK1 Pulldown PCLK1 Pullup/Pulldown CLK_SEL Pulldown VBB 1 0 D Q LE Q0 Q0 Q1 Q1 Q2 Q2 Q3 Q3 Q4 Q4
Pin Assignment
Q0 Q0 Q1 Q1 Q2 Q2 Q3 Q3 Q4 Q4 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 VCC EN VCC PCLK1 PCLK1 VBB PCLK0 PCLK0 CLK_SEL VEE
ICS853014 20-Lead TSSOP
6.5mm x 4.4mm x 0.925mm
package body G Package Top View
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
1
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Table 1. Pin Descriptions
Number 1, 2 3, 4 5, 6 7, 8 9, 10 11 12 13 14 15 16 17 18, 20 19 Name Q0, Q0 Q1, Q1 Q2, Q2 Q3, Q3 Q4, Q4 VEE CLK_SEL PCLK0 PCLK0 VBB PCLK1 PCLK1 VCC EN Output Output Output Output Output Power Input Input Input Output Input Input Power Input Pulldown Pulldown Pullup/ Pulldown Pulldown Pulldown Pullup/ Pulldown Type Description Differential output pair. LVPECL/ECL interface levels. Differential output pair. LVPECL/ECL interface levels. Differential output pair. LVPECL/ECL interface levels. Differential output pair. LVPECL/ECL interface levels. Differential output pair. LVPECL/ECL interface levels. Negative supply pin. Clock select input. When HIGH, selects PCLK1/PCLK1 inputs. When LOW, selects PCLK0/PCLK0 inputs. LVTTL / LVCMOS interface levels. Non-inverting differential LVPECL clock input. Inverting differential LVPECL clock input. VCC/2 default when left floating. Bias voltage. Non-inverting differential LVPECL clock input. Inverting differential LVPECL clock input. VCC/2 default when left floating. Positive supply pins. Synchronizing clock enable. When LOW, clock outputs follow clock input. When HIGH, Qx outputs are forced low, Qx outputs are forced high. LVTTL/LVCMOS interface levels.
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.
Table 2. Pin Characteristics
Symbol RPULLDOWN RVCC/2 Parameter Input Pulldown Resistor Pullup/Pulldown Resistors Test Conditions Minimum Typical 75 50 Maximum Units k k
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
2
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Function Tables
Table 3A. Control Input Function Table
Inputs EN 1 1 0 0 CLK_SEL 0 1 0 1 Selected Source PCLK0, PCLK0 PCLK1, PCLK1 PCLK2, PCLK2 PCLK3, PCLK3 Q0:Q4 Disabled; Low Disabled; Low Enabled Enabled Outputs Q0:Q4 Disabled; High Disabled; High Enabled Enabled
After EN switches, the clock outputs are disabled or enabled following a falling input clock edge as shown in Figure 1. In the active mode, the state of the outputs are a function of the PCLK0/PCLK0 and PCLK1/PCLK1 inputs as described in Table 3B.
Disabled
Enabled
PCLK0, PCLK1 PCLK0, PCLK1
EN
Q0:Q4 Q0:Q4
Figure 1. EN Timing Diagram
Table 3B. Clock Input Function Table
Inputs PCLK0 or PCLK1 0 1 0 1 Biased; NOTE 1 Biased; NOTE 1 PCLK0 or PCLK1 1 0 Biased; NOTE 1 Biased; NOTE 1 0 1 Outputs Q0:Q4 LOW HIGH LOW HIGH HIGH LOW Q0:Q4 HIGH LOW HIGH LOW LOW HIGH Input to Output Mode Differential to Differential Differential to Differential Single-Ended to Differential Single-Ended to Differential Single-Ended to Differential Single-Ended to Differential Polarity Non-Inverting Non-Inverting Non-Inverting Non-Inverting Inverting Inverting
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
3
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Absolute Maximum Ratings
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Item Supply Voltage, VCC Negative Supply Voltage, VEE Inputs, VI (LVPECL mode) Inputs, VI (ECL mode) Outputs, IO Continuos Current Surge Current VBB Sink//Source, IBB Operating Temperature Range, TA Package Thermal Impedance, JA Storage Temperature, TSTG Rating 4.6V (LVPECL mode, VEE = 0V) -4.6V (ECL mode, VCC = 0V) -0.5V to VCC + 0.5V 0.5V to VEE - 0.5V 50mA 100mA 0.5mA -40C to +85C 73.2C/W (0 lfpm) -65C to 150C
DC Electrical Characteristics
Table 4A. Power Supply DC Characteristics, VCC = 2.375V to 3.8V; VEE = 0V, TA = -40C to 85C
Symbol VCC IEE Parameter Positive Supply Voltage Power Supply Current Test Conditions Minimum 2.375 Typical 3.3 Maximum 3.8 85 Units V mA
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
4
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Table 4B. DC Characteristics, VCC = 3.3V; VEE = 0V, TA = -40C to 85C
-40C Symbol VOH VOL VIH VIL VBB VCMR IIH IIL Parameter Output High Voltage; NOTE 1 Output Low Voltage; NOTE 1
Input High Voltage (Single-ended) Input Low Voltage (Single-ended)
25C Max 2.38 1.68 2.36 1.765 1.98 3.3 150 Min 2.225 1.425 2.075 1.43 1.86 1.2 Typ 2.295 1.52 Max 2.375 1.615 2.36 1.765 1.98 3.3 150 -10 -150 -10 -150 Min 2.22 1.44 2.075 1.43 1.86 1.2
80C Typ 2.295 1.535 Max 2.365 1.63 2.36 1.765 1.98 3.3 150 Units V V V V V V A A A
Min 2.175 1.405 2.075 1.43 1.86 1.2
Typ 2.275 1.545
Output Voltage Reference; NOTE 2 Input High Voltage Common Mode Range; NOTE 3, 4 Input High Current Input Low Current PCLK0, PCLK1 PCLK0, PCLK1 PCLK0, PCLK1 PCLK0, PCLK1
-10 -150
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V. NOTE 1: Outputs terminated with 50 to VCC - 2V. NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode. NOTE 3: Common mode voltage is defined as VIH. NOTE 4: For single-ended applications, the maximum input voltage for PCLKx, PCLKx is VCC + 0.3V
.Table 4C. LVPECL DC Characteristics, VCC = 2.5V; VEE = 0V, TA = -40C to 85C
-40C Symbol VOH VOL VIH VIL VCMR IIH IIL Parameter Output High Voltage; NOTE 1 Output Low Voltage; NOTE 1
Input High Voltage (Single-ended) Input Low Voltage (Single-ended)
25C Max 1.58 0.88 1.56 0.965 2.5 150 Min 1.425 0.625 1.275 0.63 1.2 Typ 1.495 0.72 Max 1.57 0.815 1.56 0.965 2.5 150 -10 -150 -10 -150 Min 1.42 0.64 1.275 0.63 1.2
80C Typ 1.495 0.735 Max 1.565 0.83 1.56 0.965 2.5 150 Units V V V V V A A A
Min 1.375 0.605 1.275 0.63 1.2
Typ 1.475 0.745
Input High Voltage Common Mode Range; NOTE 2, 3 Input High Current Input Low Current PCLK0, PCLK1 PCLK0, PCLK1 PCLK0, PCLK1 PCLK0, PCLK1
-10 -150
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V. NOTE 1: Outputs terminated with 50 to VCC - 2V. NOTE 2: Common mode voltage is defined as VIH. NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, PCLKx is VCC + 0.3V.
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
5
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Table 4D. ECL DC Characteristics, VCC = 0V; VEE = -3.8V to -2.375V, TA = -40C to 85C
-40C Symbol VOH VOL VIH VIL VBB VCMR IIH IIL Parameter Output High Voltage; NOTE 1 Output Low Voltage; NOTE 1
Input High Voltage (Single-ended) Input Low Voltage (Single-ended)
25C Max -0.92 -1.62 -0.94 -1.535 -1.32 0 150 Min -1.075 -1.875 -1.225 -1.87 -1.44 VEE+1.2 Typ -1.005 -1.78 Max -0.93 -1.685 -0.94 -1.535 -1.32 0 150 -10 -150 -10 -150 Min -1.08 -1.86 -1.225 -1.87 -1.44 VEE+1.2
80C Typ -1.005 -1.765 Max -0.935 -1.67 -0.94 -1.535 -1.32 0 150 Units V V V V V V A A A
Min -1.125 -1.895 -1.225 -1.87 -1.44 VEE+1.2
Typ -1.025 -1.755
Output Voltage Reference; NOTE 2 Input High Voltage Common Mode Range; NOTE 3, 4 Input High Current Input Low Current PCLK0, PCLK1 PCLK0, PCLK1 PCLK0, PCLK1 PCLK0, PCLK1
-10 -150
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V. NOTE 1: Outputs terminated with 50 to VCC - 2V. NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode. NOTE 3: Common mode voltage is defined as VIH. NOTE 4: For single-ended applications, the maximum input voltage for PCLKx, PCLKx is VCC + 0.3V
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
6
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
AC Electrical Characteristics
Table 5. AC Characteristics, VCC = -3.8V to -2.375V or , VCC = 2.375V to 3.8V; VEE = 0V, TA = -40C to 85C
-40C Symbol fMAX tPD tsk(o) tsk(pp) VPP tR / tF tS tH Parameter Output Frequency Propagation Delay; NOTE 1 Output Skew; NOTE 2, 5 Part-to-Part Skew; NOTE 3, 5 Peak-to-Peak Input Voltage; NOTE 4 Output Rise/Fall Time 20% to 80% 150 90 100 200 800 150 50 140 355 Min Typ >2 440 13 525 25 105 1800 210 150 90 100 200 800 150 50 140 376 Max Min 25C Typ >2 460 13 550 25 105 1800 210 150 90 100 200 800 150 50 140 400 Max Min 80C Typ >2 500 13 595 25 130 1800 210 Max Units GHz ps ps ps mV ps ps ps
Clock Enable Setup Time Clock Enable Hold Time
All parameters are measured at f 1GHz, unless otherwise noted. NOTE 1: Measured from the differential input crossing point to the differential output crossing point. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. NOTE 4: The VCMR and VPP levels should be such that input low voltage never goes below VEE. NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
7
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Parameter Measurement Information
2V
VCC
VCC
Qx
SCOPE
PCLKx
V
PP
Cross Points
V
CMR
PCLKx
LVPECL
nQx VEE
VEE
-1.8V to -0.375V
-
LVPECL Output Load AC Test Circuit
Differential Input Level
Par t 1
Qx
Qx Qx
Qx
Qy Qy
Par t 2
Qy Qy
tsk(pp)
tsk(o)
Part-to-Part Skew
Output Skew
PCLKx
80% Clock Outputs
80% VSW I N G
PCLKx Q0:Q4 Q0:Q4
20% tR tF
20%
tPD
Output Rise/Fall Time
Propagation Delay
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
8
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Parameter Measurement Information, continued
PCLKx PCLKx
EN
t HOLD t SET-UP
Setup and Hold Time
Application Information
Wiring the Differential Input to Accept Single Ended Levels
Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = VCC/2 is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.
VCC
R1 1K Single Ended Clock Input PCLKx
V_REF
nPCLKx
C1 0.1u
R2 1K
Figure 2. Single-Ended Signal Driving Differential Input
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
9
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
LVPECL Clock Input Interface
The PCLK/PCLK accepts LVPECL, LVDS, CML, SSTL and other differential signals. Both VSWING and VOH must meet the VPP and VCMR input requirements. Figures 3A to 3E show interface examples for the HiPerClockS PCLK/PCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.
3.3V 3.3V 3.3V 3.3V R1 50 Zo = 50 PCLK Zo = 50 nPCLK Zo = 50 R1 100 nPCLK R2 50 3.3V Zo = 50
PCLK
CML
HiPerClockS PCLK/nPCLK
CML Built-In Pullup
HiPerClockS PCLK/nPCLK
Figure 3A. HiPerClockS PCLK/PCLK Input Driven by an Open Collector CML Driver
Figure 3B. HiPerClockS PCLK/PCLK Input Driven by a Built-In Pullup CML Driver
3.3V 3.3V 3.3V R3 125 Zo = 50 PCLK Zo = 50 nPCLK Zo = 50 C2 R4 125 3.3V
3.3V 3.3V R3 84 Zo = 50 C1 PCLK R4 84
3.3V LVPECL
nPCLK
LVPECL
R1 84 R2 84
HiPerClockS Input
R5 100 - 200
R6 100 - 200
R1 125
R2 125
HiPerClockS PCLK/nPCLK
Figure 3C. HiPerClockS PCLK/PCLK Input Driven by a 3.3V LVPECL Driver
Figure 3D. HiPerClockS PCLK/PCLK Input Driven by a 3.3V LVPECL Driver with AC Couple
2.5V 3.3V 2.5V R3 120 Zo = 60 PCLK Zo = 60 nPCLK Zo = 50 R5 100 C2 R4 120 3.3V Zo = 50 C1
3.3V 3.3V R3 1k R4 1k PCLK
nPCLK R1 1k R2 1k
SSTL
R1 120 R2 120
HiPerClockS PCLK/nPCLK
LVDS
HiPerClockS PCLK/nPCLK
Figure 3E. HiPerClockS PCLK/PCLK Input Driven by an SSTL Driver
Figure 3F. HiPerClockS PCLK/PCLK Input Driven by a 3.3V LVDS Driver
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
10
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Recommendations for Unused Output Pins Inputs:
PCLK/PCLK INPUTS
For applications not requiring the use of a differential input, both the PCLK and PCLK pins can be left floating. Though not required, but for additional protection, a 1kW resistor can be tied from PCLK to ground. For applications
Outputs:
LVPECL Outputs
All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.
LVCMOS Control Pins
All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A 1k resistor can be used.
Termination for 3.3V LVPECL Outputs
The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and FOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50 transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 4A and 4B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.
3.3V Zo = 50 125 FOUT FIN Zo = 50 FOUT 50 1 Z ((VOH + VOL) / (VCC - 2)) - 2 o 50 VCC - 2V RTT Zo = 50 84 84 FIN 125
Zo = 50
RTT =
Figure 4A. 3.3V LVPECL Output Termination
Figure 4B. 3.3V LVPECL Output Termination
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
11
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Termination for 2.5V LVPECL Outputs
Figure 5A and Figure 5B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50 to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to ground level. The R3 in Figure 5B can be eliminated and the termination is shown in Figure 5C.
2.5V 2.5V 2.5V VCC = 2.5V R1 250 50 + 50 - - R3 250 50 + VCC = 2.5V
50
2.5V LVPECL Driver
R1 50 R2 50
2.5V LVPECL Driver
R2 62.5 R4 62.5
R3 18
Figure 5A. 2.5V LVPECL Driver Termination Example
Figure 5B. 2.5V LVPECL Driver Termination Example
2.5V VCC = 2.5V
50 +
50 -
2.5V LVPECL Driver
R1 50 R2 50
Figure 5C. 2.5V LVPECL Driver Termination Example
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
12
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Schematic Example
This application note provides general design guide using ICS853014 LVPECL buffer. Figure 6 shows a schematic example of the ICS853014 LVPECL clock buffer. In this example, the input is driven by an LVPECL driver. CLK_SEL is set at logic high to select PCLK1/PCLK1 input.
Zo = 50 + Zo = 50 R2 50 R1 50
3.3V R12 3.3V Zo = 50 3.3V Zo = 50 C2 0.1u 1K 11 12 13 14 15 16 17 18 19 3.3V 20 C1 0.1u
U1 10 9 8 7 6 5 4 3 2 1
VEE CLK_SEL PCLK0 nPCLK0 VBB PCLK1 nPCLK1 VCC nEN VCC
nQ4 Q4 nQ3 Q3 nQ2 Q2 nQ1 Q1 nQ0 Q0
R3 50
C3 0.1u
Zo = 50 + Zo = 50
LVPECL Driv er
R9 50
R10 50
ICS853014 R5 50 R4 50
-
C5 0.1u
R7 50
R11 1K R6 50 C4 0.1u
Figure 6. ICS853014 Example LVPECL Clock Output Buffer Schematic
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
13
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Power Considerations
This section provides information on power dissipation and junction temperature for the ICS853014. Equations and example calculations are also provided.
1.
Power Dissipation.
The total power dissipation for the ICS853014 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for VCC = 3.8V, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. * * Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 85mA = 323mW Power (outputs)MAX = 30.94mW/Loaded Output pair If all outputs are loaded, the total power is 5 * 30.94mW = 154.7mW
Total Power_MAX (3.8V, with all outputs switching) = 323mW + 154.7mW = 477.7mW 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125C. The equation for Tj is as follows: Tj = JA * Pd_total + TA Tj = Junction Temperature JA = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) TA = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming 0 air flow and a multi-layer board, the appropriate value is 66.6C/W per Table 6 below.
Therefore, Tj for an ambient temperature of 85C with all outputs switching is: 85C + 0.478W * 66.6C/W = 116.8C. This is below the limit of 125C. This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).
Table 6. Thermal Resistance JA for 20 Lead TSSOP, Forced Convection
JA by Velocity Linear Feet per Minute Single-Layer PCB, JEDEC Standard Test Boards Multi-Layer PCB, JEDEC Standard Test Boards 0 114.5C/W 73.2C/W 200 98.0C/W 66.6C/W 500 88.0C/W 63.5C/W
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
14
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 7.
VCC
Q1
VOUT
RL 50
VCC - 2V
Figure 7. LVPECL Driver Circuit and Termination
To calculate worst case power dissipation into the load, use the following equations which assume a 50 load, and a termination voltage of VCC - 2V.
* * For logic high, VOUT = VOH_MAX = VCC_MAX - 0.935V (VCC_MAX - VOH_MAX) = 0.935V For logic low, VOUT = VOL_MAX = VCC_MAX - 1.67V (VCC_MAX - VOL_MAX) = 1.67V
Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low.
Pd_H = [(VOH_MAX - (VCC_MAX - 2V))/RL] * (VCC_MAX - VOH_MAX) = [(2V - (VCC_MAX - VOH_MAX))/RL] * (VCC_MAX - VOH_MAX) = [(2V - 0.935V)/50] * 0.935V = 19.92mW
Pd_L = [(VOL_MAX - (VCC_MAX - 2V))/RL] * (VCC_MAX - VOL_MAX) = [(2V - (VCC_MAX - VOL_MAX))/RL] * (VCC_MAX - VOL_MAX) = [(2V - 1.67V)/50] * 1.67V = 11.02mW
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
15
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Reliability Information
Table 7. JA vs. Air Flow Table for a 20 Lead TSSOP
JA vs. Air Flow Linear Feet per Minute Single-Layer PCB, JEDEC Standard Test Boards Multi-Layer PCB, JEDEC Standard Test Boards 0 114.5C/W 73.2C/W 200 98.0C/W 66.6C/W 500 88.0C/W 63.5C/W
Transistor Count
The transistor count for ICS853014 is: 373 Pin compatible with MC100LVEP14 and SY100EP14U
Package Outline and Package Dimension
Package Outline - G Suffix for 20 Lead TSSOP Table 8. Package Dimensions
All Dimensions in Millimeters Symbol Minimum Maximum N 20 A 1.20 A1 0.05 0.15 A2 0.80 1.05 b 0.19 0.30 c 0.09 0.20 D 6.40 6.60 E 6.90 Basic E1 4.30 4.50 e 0.65 Basic L 0.45 0.75 0 8 aaa 0.10 Reference Document: JEDEC Publication 95, MO-153
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
16
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Ordering Information
Table 8. Ordering Information
Part/Order Number ICS853014BG ICS853014BGT ICS853014BGLF CS853014BGLFT Marking ICS853014BG ICS853014BG ICS853014BGL ICS853014BGL Package 20 Lead TSSOP 20 Lead TSSOP "Lead-Free" 20 Lead TSSOP "Lead-Free" 20 Lead TSSOP Shipping Packaging Tube 2500 Tape & Reel Tube 2500 Tape & Reel Temperature -40C to 85C -40C to 85C -40C to 85C -40C to 85C
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
17
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Revision History Sheet
Rev Table T4B T4C B T4D Page 4 5 5 8 10 T4B - T4D C 4-5 6 1 16 4 Description of Change 3.3V LVPECL table - VOH values changed @ 85 to 2.22V min. and 2.295V typical from 2.295V min. and 2.33V typical. 3.3V LVPECL table - VOH values changed @ 85 to 2.22V min. and 2.295V typical from 2.295V min. and 2.33V typical. 3.3V LVPECL table - VOH values changed @ 85 to 2.22V min. and 2.295V typical from 2.295V min. and 2.33V typical. Revised LVPECL Output Termination drawings. Revised Figure 5D. LVPECL & ECL tables - deleted VPP row. AC Table - added VPP row and changed max. value from 1200mV to 1800mV. Features Section - added Lead-Free bullet. Ordering Information Table - added Lead-Free part number. Power Supply DC Characteristics Table - changed IEE from 75mA max. to 85mA max. Updated format throughout the datasheet. Corrected block diagram. 3/18/04 Date
9/10/03
C
T9 4A
5/13/05
D d 1
7/6/07 11/12/07
IDTTM / ICSTM 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
18
ICS853014BG REV. DNOVEMBER 12, 2007
ICS853014 LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
Innovate with IDT and accelerate your future networks. Contact:
www.IDT.com
For Sales
800-345-7015 408-284-8200 Fax: 408-284-2775
For Tech Support
netcom@idt.com 480-763-2056
Corporate Headquarters
Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)
Asia Pacific and Japan
Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505
Europe
IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851
www.IDT.com
(c) 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA


▲Up To Search▲   

 
Price & Availability of ICS853014BGL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X